Benchmark Parameters for Future km3 Detectors

C.Spiering VLVNT Workshop Amsterdam October 2003

- According to which physics goals should a km3 detector be optimized ?
- According to which physics goals should a site selection be made ?
- Which benchmark parameters should be used to judge the performance (into which parameters should the performance be "casted"?)

Main physics goals proposed as basis for benchmarking procedure

Main physics goals proposed as basis for benchmarking procedure (cont'd)

 → Atm.neutrino oscillations

 not competitive with SK & K2K if not the spacing is made unreasonably small
 nested array a la NESTOR 7-tower ?
 proposal: → no optimization goal
 → no benchmark goal

→ Oscillation studies with accelerators
 - too exotic to be included now

Main physics goals proposed as basis for benchmarking procedure (cont'd)

- → Diffuse fluxes
 - muons up and down
 - cascades
- → Others
 - downgoing muons
 - \rightarrow physics
 - \rightarrow calibration
 - monopoles
 - slowly moving particles

┿

Benchmark Parameters

Average upper flux limit & sensitivity

90% C.L. interval $\mathbf{m}_{90} = \langle \mathbf{m}_1, \mathbf{m}_2 \rangle$

is a function of number of observed events n_{obs} and of expected background n_b

$$\mathbf{m}_{90}(n_{obs},n_b)$$

Feldman-Cousins sensitivity (average upper event limit) for no true signal ($n_s = 0$)

$$\overline{\boldsymbol{m}}_{90}(n_b) = \sum_{n_{obs}=0}^{\infty} \boldsymbol{m}_{90}(n_{obs}, n_b) \frac{(n_b)^{n^{obs}}}{(n_{obs})!} \exp(-n_b)$$

22.10.2003

Minimize "model rejection factor"

$$mrf = \frac{\mathbf{m}_{90}}{n_s}$$

and hence the average upper flux limit

$$\Phi(E,\Theta)_{90} = \Phi(E,\Theta) \cdot \frac{\overline{m}_{90}}{n_s}$$

- \rightarrow 90% C.L. exclusion limit ?
- \rightarrow 5 σ detection sensitivity ?
- \rightarrow for which models ?
- \rightarrow for which time 3 years, 5 years?

How to present energy dependence of limits ? Integral, quasi-differential, differential ?

- E⁻² line extending over range which contains 90% of events expected
- Limits on specific models (giving *model rejection factor, mrf*)
- Envelope to series of benchmark models
- Greens function
- differential limit per decade

Integral Limits

Quasi-Differential Limits

1. Envelope along a series of benchmark spectra

e.g. E^{-1} with an exponential cut-off (like MPR did for their limit)

$$F \approx \exp(E/E_{\max}) \cdot E^{-1}$$

22.10.2003

Advantages:

- shape not so far from "typical" spectra
- gives a realistic impression how a model peaking at that energy would be constrained (gives *mrf* within < factor 2 except for exotic models
- easy, agreeable as standard

Disadvantages:

- artificial spectrum

Amstderdam

Green's Function Approach

(see Lehtinen et al, astro-ph/0309656, also Fukuda et al, SK, astro-ph/0205304)

Be $\lambda(E)$ the expected number of events for unit monoenergetic flux at different energies *E*.

Expected number of events for differential flux $\Phi(E)$ is

$$n_{\rm exp} = \int \boldsymbol{l}(E) \cdot \boldsymbol{\Phi}(E) \, dE$$

No events detected, no background:

$$\int \boldsymbol{l}(E) \cdot \boldsymbol{\Phi}(E) \, dE \leq 2.4 = \boldsymbol{m}_{90}$$

Green's Function Approach (cont'd)

Amstderdam

Green's function: advantages and drawbacks

Advantages:

- Really differential information
- Allows everybody to convolute with his/her own spectrum
- Could be the "exchange format" for limits between

different experiments

Drawback:

- Not so intuitive like other methods

Decadal limit (M. Kowalski)

Calculate the differential limit on the flux at energy E_0 from moving average of number of expected events:

$$N(E_0) \propto \int_{E^-}^{E^+} \Phi_0 (E / E_0)^{-g} \cdot A_{eff}(E) dE$$
$$E \pm = 10^{(\log E_0 \pm 0.5)}$$

 \rightarrow Upper limit on the flux of neutrinos:

$$\Phi_{90}(E_0) = m_{90} / N(E_0) \times \Phi_0$$

22.10.2003

End of Talk

22.10.2003

C.Spiering, VLVNT Workshop Amstderdam 20

Which units for diffuse flux ?

• $E^2 \times dF/dE$ [cm⁻² s⁻¹ sr⁻¹ GeV]

• $\log \{ dF/(d \ln E) \}$ [cm⁻² s⁻¹ sr⁻¹]

22.10.2003

 $\frac{dF}{d(\ln E)} = \frac{E \, dF}{dE} \rightarrow \nu F_{\nu}$ (as commonly used in astrophysics)

 $E^2 dF/dE$ does not reflect the integral spectrum reasonably well and is misleading.

e.g. GZK

- peak in $E^2 dF/dE$ at 10¹⁰GeV
- peak in dF/d(InE) at 10⁹ GeV
- max. particle flux at 10⁸ GeV

 $E^2 dF/dE$ is "easier", looks "nicer" for most models

Many people in our community are used to $E^2 dF/dE$ (for a counter example see:

Albuquerque/Lamoureux/Smoot, hep-ph/0109177 !)

$E^2 \times dF/dE$ versus log { $dF/(d \ln E)$ }

Plots from a talk given by Peter Gorham

22.10.2003

Backup Slides

Green's Function Approach

(see Lehtinen et al, astro-ph/0309656)

$$Flux = \frac{N_{ev}}{N_T \int \boldsymbol{s}(E_n) \boldsymbol{e}(E_n) \Phi(E_n) dE_n}$$

• N_T - nb. of nucleons

• $\epsilon\,$ - detector efficiency

• σ - cross section

• Φ - energy spectrum (norm. to 1)

replace spectrum F(E) by delta function

Green's Function Approach

(see Fukuda et al, SK, astro-ph/0205304)

Fluence limit
$$F_{90}$$
 [cm⁻²] $F_{90} = \frac{m_{90}}{N_T \int S(E_n) e(E_n) l(E_n) dE_n}$

• N_T - nb. of nucleons

• $\epsilon\,$ - detector efficiency

• σ - cross section

• λ - energy spectrum (norm. to 1)

replace spectrum I(E) by delta function

$$G(E_{?}) = \frac{G(E_{?})}{AN_{a} \int \left[\int \frac{E_{?}}{E_{th}} \frac{ds(E_{?})}{dE_{\mu}} r(E_{\mu}) dE_{\mu} \right] d(E_{?} - E_{?}) dE_{?}}$$

Expected number of events

$$N_{ev} = \int \boldsymbol{l} (E_{n}) \Phi(E_{n}) dE_{n}$$

22.10.2003

Single event sensitivity (SES) per decade

(see e.g. AUGER paper, Bertou et al., astro-ph/0104452)

SK Green's function for HE contained and upward muons coincident with a GRB.

Convolution with an E⁻² spectrum gives, e.g.

 $F_{90}(v_{\mu}) =$

2.7 -108 cm⁻² for 7-80 MeV

1.4 •10² cm⁻² for 0.2-200 GeV

3.8 • 10⁻² cm⁻² for 2 GeV–100TeV

Single event sensitivity (SES) per decade

(see e.g. AUGER paper, Bertou et al., astro-ph/0104452)

"Event rate per decade"

$$I_{10}(E) = \ln 10 \ E \cdot f(E) \cdot A_{eff}(E)$$

31

AUGER $I_{10}(E) = 1$ curves (1 event per year and decade)

