VLVnT workshop October 2003

## Comparison of different km3 designs using Antares tools

D. Zaborov (ITEP, Moscow)

- Three kinds of detector geometry
- Incoming muons within 1 .. 1000 TeV energy range
- Detector efficiency and angular resolution obtained with the Antares tools

### A large homogeneous KM3 detector (8000 PMTs)



### A large NESTOR – like detector (8750 PMTs)



#### A large NEMO – like detector (4096 PMTs)



# Detector geometries: Common features

Set 1:

PMTs: 10 inch Characterestics from Antares Hamamatsu R7820 used (eff. Area = 0.44 cm<sup>2</sup>, angular response, QE)

Set 2:

15 inch PMTs: same characteristics but eff. Area =  $(15/10)^2$ 

#### No PMT multipletts used

i.e. Tight coincidences between close PMTs not possible replaced by high pulse condition (above 2.5, 3.5 pe)

# **Event Sample**



Energy range: 1TeV - 1PeV Spectrum: 1/E (flat in log(E)) lower hemisphere isotropic Surface drawing km3 with partic-0.0075 60 (135) kHz noise light Simplified digitisation (2 ARS 25nsec integration)

recov4r2 with AartStrategy

Analysis antroot and a3d

# **Program modifications**

Most of the code was easily scalable for use with 1km<sup>3</sup> detector

Some parameters in include files had to be changed like: (km3.inc, phomul.inc) max. number of PMTs, clusters, strings

Patch work in km3 to allow use of 15 inch PMT without creating new diffusion tables

Reco: modification of Select and Filter routines to adapt to high pulse condition and absence of coincidences (2.5 pe for 10 inch PMT, 3.5pe for 15inch PMT)

## Modified causality filter

Usual filter:

abs(dt) < dr/v<sub>liabi</sub>

Plane wave approximation dr << x (photon travel path) Large detectors (new condition):

abs[abs(dt)-dr/c<sub>light</sub>] < 500nsec

Approximation x << dr (hits close to muon track, takes into account absorption)





## Effect of new causality filter



### Angular error distribution with the homogeneous detector

#### Error in reconstruction of upward going tracks



#### Angular resolution of the homogeneous detector



### Angular resolution of the NESTOR-like detector



### Angular resolution of the NEMO-like detector



### Effective area of the homogeneous detector for muons

KM3 cube detector: 8000 PMTs 10 inches



### Effective area of the NESTOR-like detector for muons





#### Effective area of the NEMO-like detector for muons

#### detector nemo 4096 up-down PMTs 10 inches



#### Homogeneous geometry: number of detected hits vs. muon energy

#### number of signal hits per event



#### NESTOR-like geometry: number of detected hits vs. muon energy

number of signal hits per event



### NEMO geometry: number of detected hits vs. muon energy

#### number of signal hits per event



### Effective area dependence on PMT size



#### Effective area dependence on noise



## Conclusions

- Monte-Carlo simulation of Cherenkov light production and muon track reconstruction have been performed using Antares tools.
- The homogeneous geometry demonstrates high detector efficiency starting from 1 TeV.
- Effective area reached with the NESTOR-like geometry is smaller than obtained with the homogeneous geometry.
- The NEMO-like detector has a significantly smaller effective area than the homogeneous configuration mainly due to its lower PMT density.
- All the geometries show angular resolution in muon track reconstruction of about 0.1 degree or better.
- High requirements of the reconstruction software for the number of hits, especially with non-homogeneous detectors, have been discovered and require further investigations.