## Introduction

- Hypothesis
- Topology, technical constrains
- Redundancy, budget constrains
- Grounding
- Reliability
- Conclusion









# **Hypothesis**

Power VLVnT structure = 10 \* Antares VLVnT power < 5 \* Antares Technology progress Structure upgrades Demands of other users?

#### • Environmental

Distance shore-facility Power cables combined with fibers Single point failures has to avoid

= 100 km

= 100 kW





### **Power transmission**







# Node grid



# Node grid II















## Long distance to local power







## Long distance cable behavior

- Higher voltage = lower current = less Cu losses = higher reactive losses
- AC losses (I<sub>load</sub><sup>2</sup>+(kUwC<sub>cable</sub>)<sup>2</sup>) R<sub>cu</sub> > DC losses (I<sub>load</sub><sup>2</sup>R<sub>cu</sub>)
- AC charging/discharging C, DC stored energy =  $\frac{1}{2}CV^2$
- DC conversions more complex then AC conversions
- AC cables have be partitionized to adapt reactive compensation sections.









## **Redundant Node grid**









## **Conclusions on topology**

#### AC/AC

- passive components
- initial costs
- losses
- fixed ratio by transformers
- extra DC conversion subm.
- running costs
- extra cabling

#### AC/DC

- + constant output level
- initial costs
- active components subm.
- running costs

#### DC/DC

- + constant output level
- cable losses
- running costs
- active components
- initial costs





# Grounding

- Grounding is essential to relate all potentials to the environment.
- Prevent ground currents by use of one ground point in a circuit.







## Reliability

#### Not something we buy, but something we make!



Denson, W., "A Tutorial: PRISM", RAC, 3Q 1999, pp. 1-2





### **General conclusions**

#### • Technical issues to investigate

- DC for long distance is promising-> breakeven study for costs and redundancy
- node grid gives redundancy
- node grid can be made of components used in railway industry
- inter module grid can be made of components used in automotive industry
- each board / module makes its own low voltages

#### Organization

- power committee recommend
- specify the power budget (low as possible, no changes)
- coordination of the grounding system before realizing
- watching test reports, redundancy and reliability
- try to involve a technical university for the feasibility study
- coordination between power and communication infrastructures





### **Industrial references**



Sally D. Wright, Transmission options for offshore wind farms in the united states, University of Massachusetts

High Voltage Direct Current Transmission, Siemens

HVDC light, ABB

Gemmell, B; e.a. "HVDC offers the key to untapped hydro potential", IEEE Power Engineering Review, Volume:22 Issue: 5, May 2002 Page(s): 8-11





## **Cable configuration**

- Combined with fibers for communication
- Redundancy









High Voltage Direct Current Transmission, Siemens





#### **Power factor corrector**





delivered power



## **Converter types**







## Local power



VLVnT facility-power

workshop