Timing calibration in ANTARES

Juan José Hernández Rey IFIC – Instituto de Física Corpuscular Universitat de València - C.S.I.C.

(for the ANTARES collaboration)

Workshop on Technical Aspects of a VLVvT in the Mediterranean Sea NIKHEF, Amsterdam, October 5–8, 2003

Timing Requirements

- **Absolute timing** (i.e. w.r.t. UTC)
 - Compatible with available systems (GPS, synchronization)
 - Physics requirements $\Rightarrow \sim 1 \text{ ms}$ (coherent source of 300–km size)
- **Relative timing** (i.e. among OMs)
 - Limited by intrinsic detector processes

event to event fluctuations:

- **TTS of PMTs** (s ~ 1.3 ns)
- Light propagation in water (s ~ 1.3 ns) More info?
- Electronics (s < 1 ns)</p>
- Goal \Rightarrow s = 0.5 ns (in <u>average</u> relative ? t₀'s)

Timing calibration systems

- *In-situ* calibration systems:
 - Clock calibration system
 - LEDs in Optical Modules
 - Optical Beacons
 - Down-going muon tracks

Built-in systems

- Calibration before immersion:
 - Laser–fibre system
 - Clock calibration
 - LEDs in Optical Modules

Laboratory specific

Clock

calibration

system

Clock system on-shore

Time calibration through the clock system

Each ARS (readout chip) has its own local time counter

The ARS uses the LCM clock board for Time Stamping

A general Reset Time Stamp order to all ARS every 0.8 s (max)

• A TVC ramp gives time w.r.t. each clock cycle

Clock boards at SCMs and at LCMs are bi-directional lode signal

Roundtrip delay \Rightarrow relative calibration up to **LCM clock boards**

Threshold

Echo- based clock calibration (Tests)

Phase Jitter between 2 cards (Roundtrip delay).

Reference

Clock calibration test results

Average of 100 measurements:

s~10 ps

One-shot difference:

<?>~100 ps

Pre- Production Sector Line and Mini Instrumentation Line results

(Clock only reached SCMs due to broken fibre)

Roundtripime20ifferenceTote286ifts ~800Dpist: -~60resision: 100 ps

Calibration

in the

Timing calibration in a dark room

- Before immersion the strings will be calibrated in a dark room at CPPM (Marseilles).
- Some of the built-in systems are used.
- A dedicated laser-fibre system is also employed.
- Once in the sea, the in-situ calibration
 - will have these results as a reference.
- Dark room calibration with
 - Pre-production Sector Line (PSL)

Laser calibration at the CPPM dark room

Time calibration in the Laboratory (results) Time difference of laser pulses between ARS

raw data Clock and TVC calibrations @ after

A few 100 ns between two consecutive storeys due to difference in clock delay

Differences due to TT and cables OM/LCM

Pulsed LED

in

Optical Module

Transit Time monitoring by the LED in the OM

Vda fixed (1025V)

 $TT(V_{kd})$ slope does not depend on N_{pe}

Transit Time monitoring by the LED in the OM

 $TT(V_{kd})$ and $TT(V_{da})$ can be reproduced to ± 0.5 ns

Beacons

Optical Beacons

- Use well-controlled, external (pulsed) light sources
- Scattering and absorption ⇒ OB –OM distance = ?_{abs} or ?_{scat}
 In ANTARES:
 - One LED beacon every 4/5 storeys.
 - Laser beacons at bottom of some strings.

LED Beacons in Sector Line

LED beacon

Laser beacon

Optical Beacons - Monte Carlo results

SEvere a construction of the second and the second

(if gaussian: $X(a(\%)) = \pm s v(-2 \cdot \ln a(\%))$)

Off-sets, drifts and fluctuations...

	Photocathode ? ARS TVC	ARS TVC? LCM clock	LCM clock ? JB splitter	Master Clock ? JB splitter	
Delay	~100 ns	~10ns	2–4 µs	~400 µs	
Stability	~2 ns	<0.2 ns	<0.5 ns	~2 ns	
Jitter	~1.3 ns	<0.8 ns	<0.1 ns	<0.1 ns	
Dark Room,	✓	?	✓	-	
Clock	-	-	✓	?	
LED in OM	✓	?	?	-	
Opt. Beacons	✓	?	?	-	
Muons	✓	?	?	-	

Master Clock

 $\begin{array}{ll} t_{\text{OM}} &= \text{PM cath to ARS TVC} \\ t_{\text{LCM}} &= \text{ARS in to LCM clock} \\ t_{\text{CLOCK}} &= \text{LCM clock to splitter in JB} \\ t_{\text{cable}} &= \text{Sea and land cables} \end{array}$

Defs.: Delay = ?t ; Off-set = t_0 ; Stability = Labo-site calib change or drift with time Jitter = event to event fluctuation

Calibs.:

- \checkmark = from the very start (for this calibration system)
 - ? = in the middle (contributes to this system)

- = no handle (for this system)

Summary

Timing calibration goals of ANTARES:

- ~1 ms in absolute timing (internal clock w.r.t. UTC)
- = 0.5 ns in relative timing (between OMs)
- Intrinsic (event by event) fluctuations:

S	~	1.3	?	1.3	?	1	ns
PM	Т	[medium		ium	electronics		

Several complementary systems will be used. Crosschecks will be possible. Relative calibration of average t_0 's will reach s = 0.5 ns

HYPERLINKS and BACKUP SLIDES

Clock system on-shore

PIN diode receiver module **Components of the** clock system WDM laser module Input from MEOC Output to SCMs Junction Box **Passive Splitter**

BIDIANT board (SCM and LCM Containers)

Off-sets, drifts and fluctuations (more info)

 t_{OM} = PM cath to ARS TVC t_{PM} = 48 ns @ V_{kd} =800 V 57 ns @ V_{kd} =362 V Vkd dependence ~33 ps/V TTS = 1.3 ns (Vkd ~ -1ps/V) V_{kd} time stability 0.16 V Expected variations: Channel-to-channel: ~10 ns Labo to Sea: ~5 ns Time drift: ~2 ns

 $t_{\mbox{\scriptsize LCM}}$ - due to electronics and cables Delay $\sim 10~\mbox{ns}$ Stability <0.2 ns

t_{CABLE}

Temperature variation 35 ps/K/km Part in the Sea ? very stable (<0.5 ns) Land cable: ~ 1ns (contributes to <u>absolute</u> timing only) t_{ARS} s < 0.8 ns Variations mostly due to TVC Stability ? 4.3 ns/V + 33 ps/∘C (0.1 ns ⊕ 0.6 ns)

t_{CLOCK}

Stability: s < 0.05 nsVariations mostly due to TVC Stability ? 4.3 ns/V + 33 ps/°C($0.1 \text{ ns} \oplus 0.6 \text{ ns}$) Clock to GPS precision: 1.3 ns

Light absorption and diffusion

Chromatic dispersion

Cherenkov angle is determined by phase refractive index, propagation time by group velocity (i.e. group refractive index):

$$\cos ?_c = 1/\beta \cdot n_f$$
 $v_g = c/n_g$ where: $n_g = \frac{n_f}{1 + \frac{1}{n_f} \frac{dn_f}{dl}}$

- Our detector is colour blind: a definite ? must be chosen (we use ?=460 nm). This introduces time shifts (can be corrected) and spreads (depend on distance)
- Monte Carlo shows that scattering does not introduce an additional spread up to distances of 50 m (it makes the light less "chromatic").

Overall chromaticity + scattering effects

residuals (t - $L_c \times n(460 \text{ nm})/c$)

Distance from track (m)	s _{medium} (ns)		
10	0.68		
40	1.3		
100	2.8		
200	5.9		

Pieces, parts and spares

