

Simulation in the BAIKAL experiment

I. Belolaptikov *belolap@nu.jinr.ru* (**Baikal collaboration**)

Simulation tool

1. Light propagation :

L_{sc} \approx 30-50m; L_{abs} @ 20m \blacktriangleright for showers with energy up to ~10 TeV and muons up to ~50 TeV scattering of light in medium can be ignored.

For higher energies scattering is taken into account on the base of long term measurements of parameters of scattering.

2. Accurate simulation of time response of a channel on fact of registration is provided.

3. Atmospheric muons:

CORSIKA with QGSJET.

4. Muons from atm. neutrino:

- cross-sections CTEQ4M (PDFLIB)
- Bartol atm. neutrino flux

5. Angular distribution for hadronic showers is the same as for el.-m. showers.

- **4. Lepton transport** in media and in the array is done by MUM. Showers with energy > 20 MeV are considered as catastrophic losses.
- **5. Dead time and random** hits of measuring channels are included in code. Efficiencies of channels are measured experimentally in situ.
- **6.** For simulation of **high energy neutrinos** we are going to use ANIS code.

Characteristics per channel

Array response characteristics

Reconstructed events in array

Seldom events

Conclusion

• We understand:

- 1) response of our PMTs-channels
- 2) response of our array as whole structure on a complex events like muon bundles;

• We can:

1) describe array response on events with light front upward going.

• What to do:

- 1) hadronic shower;
- 2) LPM effect;
- NT200+ will give us new opportunity to check (or may be correct) our MC