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I Water properties
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I Muon track reconstruction
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hit residual r, =" - t™

find track position and direction
so that r. follow the correct PDF




“ Probability density function of hit residuals

58

-h
=)

£l -—

3 total _

s E =TeV
S 5

810 -

5 electrons & scattered

10°

L1 L1 L1 L1 L1 N [ T
—-20 0 20 40 (510] 80 100 1 2(’! 140
residual (ns)

Optical background due to decaying 4°K
and bioluminescence.

-MC simulation
- simulation of water properties
taking in situ measurements
Into account.
- PDF strongly peaked despite
scattering
- Optical background

problem: PDF isflat for
small or very large residuals

Fitting algorithms rely on
derivatives of PDF.

Need good starting point
for the fit




“ Starting point for the Fit
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I lterative fit strategy

linear prefit

assume direction ok
and fit position

arting points

likelihood fit
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convergence? =
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# compatible hits &

final fit with solution that
has highest # compatible hits

direction known: project hits on
plane perpendicular to the track.

3hits® analytically
calculate track postion
(with ghost solutions).
Many sets of 3 hitsgive
the position.
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“ M-estimator strategy

: . Fitting technique that is resistant to'outliers, but still
linear pl’efl'[ is able to find the global minimum by
‘ minimising a'modified c2: called M
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“ Hit selections

Dt <

-

rough selection
All hitsfulfilling
causality criterion

with largest hit

Dx
\Y;

t

{ All

hits

e

|

2
0E

PRI B S T T
-400 -300 -200 -100 O

ol Lo i e Ly
100 200 300 400

J

(i.e. two out of 3 PMTSs hit within 20 ns)
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Once we have some estimate of the track:

select hits with small residual & distance
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I Optical background in the likelihood function

background hits (flat)
signal hits (peaked with tail)
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Cut on Likelihood of final fit

Both methods:. set of 'standard cuts
developed that select well reconstructed
events and rgject badly reconstructed
atm. muons. to below atm n background
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badly reconstructed events
have alarge -log(L)

atmospheric muon (bundle)
background is reduced by cuts
on the likelihood and/or

__| dedicated variables.
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I Multi-muon rejection
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I Angular resolution
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I Results: Effective area and pointing resolution
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* below 0.2° for high energies

* dominated by physics
below ~3 TEV
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I Energy Reconstruction
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I Energy Reconstruction

dE/dx 'empirical’ dE/dx 'physical’
N SA N SA
dE/dx = S<Anlqip> dE/dx = !
I‘m?det
/ \
amplitude expected from muon track length  efficiency for
min. ionising particle in det. volume detecting photons
both dE/dx methods use empirical relation between dE/dx to E.

neura network

Input 11 parameters
track parameters
-average hit amplitude neural network A
‘N, N_ontime(residual<lsns) —— : T
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I Energy Reconstruction
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I Reconstruction of low energy muons
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Specialised algorithm to reconstruct
muons using only 1 string in limited
range (30°) from vertical

NB: older version of

HE reconstruction. comparison
with new methods still to to,be
done

Effective volume for neutrines recenstructed within 3 degrees
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Increase in effective volume thanks
to single-string events (but probably
sensitive to noise rates)




I Summary

-

Direction Reconstruction:

= Algorithms consisting of several stages, providing
Increasingly accurate starting points for next stage
= Starting fit at multiple starting points

*Optical background included in PDF

—p Pointing accuracy < 0.2° for very high energies

Energy estimation from amount of light
energy resolution: factor 2-3

Also in progress.
= shower reconstruction
* increasing efficiency by tracking sources
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