A. Tsirigotis Hellenic Open University

Neutrino Extended Submarine Telescope with Oceanographic

Research

Reconstruction, Background Rejection Tools and Methods

Bioluminescence Activity

PMT Rates vs Time : Up-Looking PMTs

Bioluminescence Activity

PMT Rates vs Time : Down-Looking PMTs

Bioluminescence Activity

- •Light Bursts with duration 1-10sec
- •Site depended
- •Decreases exponentially with depth
- Seasonal variations
- •Correlated with water currents
- •Contributes to detector dead time

Bioluminescence Activity

Emitted light at the single photoelectron level

Bioluminescence Activity

Bioluminescence Contribution to the Total Trigger Rates

Bioluminescence Occurs for the $1.1\% \pm 0.1\%$ of the Active Experimental Time

- Total Trigger Rates
- Bioluminescence Contribution to the Total Trigger Rates
- **C** Experimental Trigger Rates from Periods Without Bioluminescence

Background Sources K⁴⁰ beta decay

Increasing Thresholds does not affect seriously the detection efficiency

Data Collected with

4fold Majority Coincidence Trigger

	Thresholds at 30 mV	Thresholds at 120 mV
Measured Total Trigger Rates (greater or equal to 4fold)	2.61 ± 0.02 Hz	0.12 ± 0.01 Hz
M.C. Prediction (atmospheric muons only)	0.141 ± 0.005 Hz	0.12 ± 0.01 Hz

 K^{40}

K⁴⁰ radioactivity can be used for calibration purposes in deep sea

Data from a depth of 4000 m: PMT Pulse Height Distribution

Background Sources Cosmic ray muon background

Atmospheric muon angular distribution Okada parameterization

Down coming atmospheric muons can be misreconstructed as upcoming neutrino induced muons (mirror tracks)

By using the accumulated charge on each PMT we can reduce the mirror track background

(the reduction depends on the available degrees of freedom)

Software to Hardware Trigger Time Difference (arbitrary time offset)

Event by Event Sampling Interval Variation (Constant Temperature)

Double pulse disentangling

Before the F.F.T and the attenuation corrections After the F.F.T and the attenuation corrections

Correction for overflow

Arrival time definition...

Data from a depth of 4000 m Calibration Run

Data from a depth of 4000 m: Calibration Run

Reconstructed Waveforms

Input to the Fitter

Track Reconstruction...

Run: 81_127 Event: 1789

Input to the Fitter

Run: 81_127 Event: 1789

Best fit

Fit Results

Candidat	e Track	1					Correlatiion Matrix	
Number o	f Selecte	d Pulses : 8	Number of	Used Pulses :	7 x²: 2.579	Qx²;310.800 QL: 64.600	1.00 0.38 -0.99 -0.33 -0.36	
Theta 12	. 32 +/-	26.40	Phi 58.47	+/- 144.50	d 22.50	+39.40 -2.89	0.38 1.00 -0.49 0.72 0.70	
Vx 24	.91 +/-	33.52	VV 15.07	+/-10.28	Vz 33.56	+/-41.01	-0.33 0.72 0.22 1.00 0.96	
2750 0000					1		-0.360.700.240.961.00	Sh
Candidat	e Track 3	2					Correlatiion Matrix	
Number a	f Selecte	d Pulses : 8	Number of	Used Pulses :	7 x²: 2.402	Qx2:173.500 QL: 49.160	1.00 -0.72 -0.95 0.56 -0.58	
Theta 91	.86 +/-	9.99	Phi 11.22	+/- 28.55	d17.50	+24.97 -5.32	-0.72 1.00 0.50 -0.83 0.98	
₩ 43	21 +/-	91 44	W 14 33	+/-15 05	17 12 82	+/-19.76	-0.95 0.50 1.00 -0.28 0.33	
TA 10			•, •	., 10.00	42 10:00	., 10.10	-0.58 0.98 0.33 -0.81 1.00	Sh
Candidat	te Track (3					Correlatiion Matrix	
Number o	f Selecte	d Pulses : 8	Number of	Used Pulses :	7 x²: 6.313	Qx ² :892.100 QL: 47.910	1.00 -0.65 0.83 -0.03 -0.80	
Theta 83	.93 +/-	6.24	Phi 24.69	+/- 25, 34	d14.00	+9.58 -6.04	-0.65 1.00 -0.21 -0.22 0.97	
M . 44	00 . /	10 76	NA. 01 04	./ 12.04	M- E 70	./ 10 00		
VX 44	.20 +/-	10.70	vy 21.04	+/-13.04	Ψ2 -3.70	+)-10.02	-0.80 0.97 -0.40 -0.16 1.00	Sh
Candidat	e Track -	4					Correlatiion Matrix	
Number o	f Selecte	d Pulses : 8	Number of	Used Pulses :	7 x²: 6.343	Qx2:666.500 QL: 48.540	1.00 -0.33 0.89 -0.88 -0.75	
Theta 16	1 30 +/-	23.58	Phi 341 80	+/- 56 43	d 12 00	+ 27 66 - 1 29	-0.331.00 0.08 0.73 0.79	
M. 04	06 . /	10 71	MA. 2 07	. (12.20	No. 41 07	. / 14 05		
VX 24	.00 +/-	16.71	VY 3.91	+/- 13.39	VZ -41.27	+/- 14.20	-0.75 0.79 -0.51 0.93 1.00	Sh

Run: 81_127 Event: 1789

Pictorial Representation

Charge (p.e.s)

Extension to many floors

One Tower

•Each floor runs independently (floor sub-event)

•An event is a collection of several floor sub-events when certain

requirements (e.g. timing) are fullfilled

• Online event-building

•Offline track reconstruction

Many Towers

- Track segment fit: using the PMT's of each Tower
- Global fit: using matched track segments.
- •Second iteration to collect more points

Trivially the best strategy is to use all the PMT's independent of tower This is depended on the trigger, data transmission (e.g. optoelectronics) and DAQ architecture

Event 2213 – Run 78 – BFile 70

Event 2213 – Run 78 – BFile 70

		00 . 00.00.00 Ruci			
🕒 🔿 🔿 🖉	t Results				_ = ×
Page 1 Page	2				
Best Fit Number of S Theta 92.53 Vx -47.8	Track 1 Selected Pulses : 7 Number of Us 3 +/- 13.82 Phi 148.50 + 33 +/- 10.76 Vy 24.52 +	ed Pulses:7 x²: 2.287 Qx²:16 /-36.31 d7.00 +16.47 /-29.48 Vz1.64 +/-6.3	V× .620 QL: 30.550 0. -0.90 0. 2 0. -1	Correlatiion Matrix Vy Vz Theta Phi 00 0.99 0.57 0.91 -1.00 99 0.00 0.53 0.92 -1.00 57 0.53 0.00 0.81 -0.54 91 0.92 0.81 -0.04 -0.91 .00 -1.00 -0.54 -0.91 1.00	Show Details
Candidate ⁻	Track 2			Correlatiion Matrix	
Number of S Theta 25.97 Vx –25.1	Belected Pulses: 7 Number of Us 7 +/-218.40 Phi 212.60 + 19 +/-111.30 Vy -9.33 +	ed Pulses: 7 x²: 3.014 Qx²:16 /-71.31 d10.00 +194.00 /-91.16 Vz 45.00 +/-31.	.450 QL: 29.040 0. 03.90 1. 91 1. 0.	00 1.00 1.00 1.00 0.98 00 0.00 1.00 1.00 0.97 00 1.00 0.00 0.99 0.96 00 1.00 0.99 0.90 0.97 98 0.97 0.96 0.97 1.00	Show Details
Candidate	Track 3			Correlatiion Matrix	
Number of S	Selected Pulses : 7 Number of Us	ed Pulses : 7 x²: 7.307 Qx²:19	54.000 QL: 77.210 0.		
Theta 98.77 Vx -37	7 +/-11.93 Phi 164.30 +	/-68.77 d43.50 +42.85 /-19.49 vz.22.49 +/-50	-10.84 -0 92 -0	00 -0.99 0.00 -0.29 0.03 29 0.32 -0.29 -0.15 -0.79	
TR 0.0.	, ,	10.10 12 00.10 () 00.	0.	03 -0.02 0.03 -0.79 1.00	Show Details

