Development of new electronics

Front end for Optical Module

(Km³ Cherenkov detector)

D. Lo Presti, N. Randazzo, L. Caponetto, L. Lo Nigro

OPTICAL MODULE (OM)

Each optical module is composed by :

- a large area PMT: 8" diameter or greater;
- a mu-metal shield for PMT;
- fast electronics modules for the signal readout and digitization;
- slow electronics modules (slow control) to control the essential parameters of the OM itself (PMT Supply voltages, Board power supply, ...);
- DC-DC converter to power supply the board and the PMT.

SYSTEM REQUIREMENTS

- Very low power because of the distance from the shore;
- Only one submarine interconnecting cable to have the best reliability and to simplify the deployment;
- Flexibility to give the possibility of changing parameters;
- Very small dead-time to get a good detector efficiency;
- High dynamic range to fit with different kinds of experiments;
- Very good accuracy of experimental data;
- Low costs, if possible!

PERFORMANCES

Not more than 300 mW in each OM;

Extensive use of full-custom VLSI devices both for analog and digital parts in the OM;

Power dissipation less than 5 kW (500 mW per module);

Hardware solution for Trigger;

Software solution for coincidences;

Dead Time < 0.1%;</p>

Input dynamic range >14 bit;

Timing accuracy better than 1 ns.

- (1) Pre-analysis and storage Unit
- (2) Channels concentration & data compression and packaging Unit
- (3) Trigger & Single Photon Classifier

Istituto Nazional di Fisica Nuclear

OM FRONT-END Front-end Electronics VLSI Full custom

INFN

Design Specifications of the blocks

2 V

• LIRA

- •Sampling frequency 200 MHz
- Readout frequency
 10 MHz
- Resolution \geq 9 bit
- Input Dynamic
- Input-Output Offset regulation
- •3 Input
 - •Anodo
 - Dinodo
 - •Master Clock a 20 MHz

•256 cells

VLVnT Workshop Oct. 5-8 Amsterdam

Design Specifications of the blocks

• T&SPC

- •Trigger unit
- •PMT signals classification
 - •2 thresholds remotely settable by slow control
 •Th1 Trigger SPE/4 → Start signal
 - •Th2 5 SPE → Dynode samples selection 5 bit
 - •Valid Time window NSPE 5 bit
- •Classification time 60 ns remotely settable

•PLL

- •Generation of 200 MHz Slave Clock starting from 20 MHz Master Clock
- •I/O frequency ratio adjustable \rightarrow V_{control}

5 bit

Optical Module Electronics (1) Working principles

- 1. The signal coming from the PMT is compared to two Threshold:
 - >Th2 = SPEx5 (*):
 - DYN signal.
 - >Th1 = SPE/4 (*):
 - START signal;
- 2. Signal Classification:
 - Delayed START signal
 - 60 ns <u>Decision Time;</u>
 - More than one hit;
 - Too long (*);
 - Non Single PhotoElectron;
- (*) Remotely settable by slow Control:>DAC 4 bit and latch.

The PMT signal causes a trigger event and after ~ 60 ns it is classified.

1

The Control Unit receives the start signal and set one of the LIRA in the write phase.

Optical Module Electronics (1) Working principles

- 1. The Analogue Memory LIRA (256 cells x 3 channels) samples at 200 MHz and transfers the samples at 10 MHz.
- 2. The 200 MHz clock is produced by PLL starting from 20 MHz Master Clock.
- 3. Each LIRA samples during write phase:
 - Anode signal;
 - Dynode signal;
 - > 20 MHz Master clock.
- 4. The number of samples is 10 SPE and 100 NSPE (*);
- 5. Two voltage levels Va e Vb allows offset calibration (*)
- 6. The 2 LIRA are alternatively in write and read phase.
- 7. When START signal arrives (Control Unit):
 - One of the LIRA start sampling (10) and if no NSPE signal arrives from TSPC starts reading else continues sampling (100) and then starts reading;
 - The second LIRA waits and only if the first LIRA is full starts its writing phase;
- (*) Remotely settable by Slow Control

Scrittura a 200MHz

Control Unit supervises the working state of the 2 LIRA.

If a LIRA ends its writing phase and the other is still reading one have dead time.

Optical Module Electronics (1) Working principles

- **1.A 16 bit counter counts Master Clock cycles.**
 - > A FIFO stores data coming from the counter.
- 2. In the read phase LIRA transfer a suitable number of samples (anode o dynode) to a 10 bit 10 MHz commercial ADC.
- 3. The sampled Master Clock, Hi or Low, is stored in a suitable logic to give fine informations relative to the arrival time of the signal respect to the Master Clock.
- 4. Once a LIRA has been read and data have been converted by the ADC, the last is put by Control Unit in the Power Down state.
- 5. In few Clock cycles, anyway, ADC is ready to convert again.
- 6. Data flow going to the Concentrator is administrated by Control Unit through Data Packing and Transfer Unit.
- 7. Data are realligned, labelled, compressed and packed.

Domenico Lo Prest

a new trigger. The other one now is ready to be

read.

ALICE chip

ADeLIAS microphotography

- switched capacitors array
- readout buffers
- input switches
- addressing unit
- clock distribution net
- digital control unit
- analogue control unit
- AMS CYE technology
 - 0.8 um standard CMOS
- double poly double metal

Design Specifications

Specifications:	0.8 μm CMOS	0.35 μm CMOS	
– Write/Read frequencies	40/1 MHz	200/10 MHz	
 Cells x channels 	256 x 16	256 x 3	
– Power/channel	< 4 mW	minimum	
 Linear range 	1 V	1 V	
- Resolution	8 bit	8 bit	
 Pedestal variation 	< 2 mV	< 2 mV	
 Capacitive load 	15 pF	7 pF	

AMS CSD chip

- LIRA01 microphotography
 200 MHz PLL
 - analogue memories
 - DAC
 - Trigger and Classification Unit
 - Test structures

AMS CSD technology

- 0.35 um standard CMOS
- double poly triple metal

T&SPC + Slow Control Interface

Packed JLCC84 – 84 pin

VLVnT Workshop Oct. 5-8 Amsterdam

Domenico Lo Presti

LIRAX2 200 MHz Write 10 MHz Read

LIRA03 CHIP VLVnT Workshop Oct. 5-8 Amsterdam

Istituto Naziona di Fisica Nuclea

Test Setup

Software DAQ Dedicato (LabView)

TEST RESULTS CHIP LIRA02

PLL Stand Alone 1

Data in = Master Clock a 20 MHz

Clock out = Slave Clock a 200 MHz

N=10

INFN

I/O frequency ratio adjustable \rightarrow V_{control}

All the blocks work properly except VCO

Clock out frequency < 200 MHz

SC » 144 MHz ($V_{control}$) on phase with MC ($N_{divider}$ =8)

Parasitics Underestimation in the internale stages of VCO

VLVnT Workshop Oct. 5-8 Amsterdam

Trigger & Single Photon Classifier

Slow Control Interface

VLVnT Workshop Oct. 5-8 Amsterdam

T&SPC Comparator Resolution

VLVnT Workshop Oct. 5-8 Amsterdam

INFN

Istituto Nazionale di Fisica Nucleare

LIRA TEST RESULTS

Dat File (256×10 samples) acquired in the NI DIO32 board by the ADC 3 corrisponding to LIRA alone channel 3. 100 MHz sampling rate -5 MHz readout rate @ V_{IN} = 2.1 V.

Corrisponding Dat file (256 samples- 10 times averaged).

VLVnT Workshop Oct. 5-8 Amsterdam

Domenico Lo Presti

Dat File (256×10 samples) acquired in the NI DIO32 board by the ADC 3 corrisponding to 25 LIRA alone channel 3. 100 MHz sampling rate -10 MHz readout rate @ V_{IN} = 1.5 V.

Corrisponding Dat file (256 samples- 10 times averaged).

VLVnT Workshop Oct. 5-8 Amsterdam

Pedestal-subtracted value histogram for channel 3 @ 100 MHz sampling rate -5 MHz^{26} readout rate and $V_{IN}=1.2 \text{ V}$ (left) $V_{IN}=2 \text{ V}$ (right)

Pedestal-subtracted value histogram for channel 3 @ 100 MHz sampling rate – 10 MHz readout rate and V_{IN} =1.5 V (left) V_{IN} =2 V (right)

(Top) Channel 3 average output as a functon of the input voltage @
100 MHz sampling rate, 5 MHz read-out rate.

(**Bottom**) Deviations from linear fit in the selected linear range 0.8 V @ 100 MHz sampling rate, 5 MHz read-out rate.

(Top) Channel 3 average output as a functon of the input voltage @100 MHz sampling rate, 10 MHz read-out rate.

(**Bottom**) Deviations from linear fit in the selected linear range 0.8 V @ 100 MHz sampling rate, 10 MHz read-out rate.

VLVnT Workshop Oct. 5-8 Amsterdam

INFN

lstituto Nazi di Fisica Nu

Total power dissipation

Maximum power dissipation for the whole chip has been measured using the instantaneous current value on the two power supply HP 6626A.

 $I_{Amax} = 8.78 \text{ mA}$

$$V_{DDD} = V_{DDA} = V_{DD} = 3.3 V$$
 PD=225 mW

 $I_{Dmax} = 59.6 \text{ mA}$

Relative to 2 PLL, 2 AM LIRA (200 MHz write frequency (w.f.) and 10 MHz readout frequency (r.f.)) and T&SPC working state.

<u>Readout</u>

LIRA02 chip satisfies the specification of 10 MHz readout frequency. The results for 10 MHz and 5 MHz are quite similar. Some optimization is needed to have the best performances.

Linearity

AM Linearity range, 0.8 V @ 100 MHz w.f. and 5 MHz r.f. influenced by non unitay gain -> 0,75.

•Readout OTA gain too low.

Dynamic Range

Sampling Rate [MHz]	Readout Rate [MHz]	Pedestal resolution [mV rms]	DC gain	Linearity resolution [mV rms]	Linear range [V]	Total resolution [bit]
100	10	5.5	0.733	2.81	0.8	8
100	5	1.6	0.745	3.32	0.8	8

LIRA AC performances test

- AC Test of LIRA possible only after control signal modification
- Memory addressing with simulation signals not correct
- Possible cause

 malfunctioning of the memory control logic used to synchronyze
 the control signals to Master clock
- AM write phasis perfomed using, missing the PLL, an external generator.

VLVnT Workshop Oct. 5-8 Amsterdam

Gaussian signal sampling LIRA02 100MHz W 10MHz R

INFN

Istituto Nazi di Fisica Nuc

32

Gaussian signal Reconstruction LIRA02 100MHz W 10MHz R

VLVnT Workshop Oct. 5-8 Amsterdam

INFN

Istituto Nazional di Fisica Nuclear **Domenico Lo Presti**

Gaussian signal Reconstruction

VLVnT Workshop Oct. 5-8 Amsterdam

CONSIDERATIONS ON TEST RESULTS - LIRA02

•PLL

- VCO Layout → parasitics reduction
- Total layout Optimization

•LIRA

- Redesign logic
- Readout Buffer
 - Redesign
 - New architecture with readout and write bus separated
- TSPC + Interfaccia Slow Control
 - Optimize layout

VLVnT Workshop Oct. 5-8 Amsterdam

CONCLUSIONS

- Starting from a KM³ underwater Cherenkov n detector sperimental demands : ASIC VLSI OM front-end design
- Construction of a chip front-end prototype
- Test and analysis of the results

Very encouraging results

Design of a new version

Data flux in the detector

Role of Analogue Memories in Waveform Acquisition Systems

- Non repetitive input waveforms
 - Only short part interesting
 - Off-line data analysis
 - Non continuous digitisation required
 - Preamplifiers continuously write into memory
 - Samples are stored into capacitive cells
 - Memory is frozen at trigger occurrence
 - Only memory contents is converted

Time Delaying Features

- Conversion starts only when data are validated
- Memory size lower limited by *validation time*
- Lower conversion rate than sampling rate
- Conversion rate lower limited by *dead time*

Schematic Diagram of Architecture

- cell pedestals doesn't depend on input signal
 - could be determined and cancelled
- turn-off time of the sampling switches doesn't depend on input signal
 - no timing error
- low cell-to-cell gain variation across a channel
- external (synchronous) controlled circular addressing scheme
 - better sampling accuracy of high BW signals