S. E. Tzamarias Hellenic Open University

Neutrino Extended Submarine Telescope with Oceanographic Research

First Results

2003 RUN

Electronics – DAQ – Data Analysis

Germany	Institute of Geophysics University of Hamburg Institute of Experimental and Applied Physics Center of Applied Marine Sciences Research and Technology Center West-Kueste (FTZ Buesum) University of Kiel
Greece	Physics Dept. University of Athens Institute for Geodynamics Athens Observatory Physics Dept. University of Crete Institute for Informatics and Telecommunications NCRS DEMOKRITOS National Science Foundation School of Science & Technology Hellenic Open University NESTOR Institute for Deep Sea Research, Technology and Neutrino Astroparticle Physics Physics and Astronomy Dept. University of Patras Physics Dept. University of Thessaloniki
Duccio	Experimental Design Bureau of Oceanological Engineering Institute For Nuclear Research Russian Academy of Sciences
Switzerland	Physics Dept. University of Bern CERN
U.S.A.	Dept. of Physics and Astronomy University of Hawaii Lawrence Berkeley National Laboratory

NESTOR

(NEUTRINO EXTENDED SUBMARINE TELESCOPE WITH OCEANOGRAPHIC RESEARCH)

G. Stavrakakis

Institute for Geodynamics, Athens Observatory

E. G. Anassontzis, A. Manousakis-Katsikakis, L. K. Resvanis, G. Voulgaris

A. Aloupis, J. Kontaxis, S. Nounos, P. Preve

Physics Dept., University of Athens

P. Grieder, P. Minkowsky, M. Passera

Physics Dept, University of Bern

A. Ball

CERN

G. Grammatikakis, J. Gialas

PhysicsDept., University of Crete

P. Katrivanos

Institute of Informatics and Telecommunications, NCSR DEMOKRITOS

D. Korostylev, J. Makris, O. Vasiliev, N. Zjabko

Institute for Geophysics, University of Hamburg

J. G. Learned, S. Matsuno, R. Mitiguy, M. Rosen

Dept. of Physics and Astronomy, University of Hawaii

E. Fahrun, G. Green, U. Keussen, Th. Knutz, P. Koske, J. Rathlev, Th. Schmidt,

D. Eilstrup, J. Mielke, N. Schmidt, W. Voigt

Institute of Experimental and Applied Physics, Center for Applied Marine Sciences

Research and Technology Center West Kueste (FTZ Buesum)

University of Kiel

W. Chinowsky, J. Ludvig, D. Nygren, G. Przybylski, J. Sopher, R. Stokstad

Lawrence Berkeley National Laboratory

I. Siotis

National Science Foundation, Greece

E. Markopoulos, K. Papageorgiou, L.K. Resvanis, T. Staveris, V. Tsagli, A. Tsirigotis

N. Arvanitis, A. Babalis, A. Darsaklis, J. Kiskiras, G. Limberopoulos, Th. Michos, J. Tsirmpas, A. Vougioukas

NESTOR Institute for Deep Sea Research, Technology and Neutrino Astroparticle Physics

P.E. Christopoulos, Ch. Goudis, C. Politis

Physics and Astronomy Dept., University of Patras

G. Bourlis, E. Christopoulou, A. Leisos, E. Pierri, N. Spanos, S. Tzamarias

School of Science and Technology, Hellenic Open University

V.V. Ledenev

O. Vaskine, K. Komlev

Experimental Design Bureau of Oceanological Engineering

A.V. Butkevich, L.G. Dedenco, S.K. Karaevsky, A. Mironovich, N.M, Surin, I.M. Zheleznykh, V. A.Zhukov

L.M. Zacharov, A. Shnyrev

Institute For Nuclear Research

Russian Academy of Sciences

Marine Technology Collaborators	
Germany	•ALU-BAU, Buedelsdorf •GeoPro mbH •GISMA GmBH
Greece	 Hellenic Telecommunications Organization (OTE) Marine Technology Development Company (EANT) National Centre Marine Research (NCMR) Institute for Marine Biology of Crete Kourtis Salvage Ltd Naval Engineering Dept., Athens Technology University
U.S.A.	•MAKAI Engineering, Hawaii •Scripps Institute of Oceanolography, La Jolla, California 4

The NESTOR Neutrino Telescope Site

Site characteristics

- And Alexandree
- a broad plateau: 8x9 km² in area, 7.5 nautical miles from shore
- depth: ~4000m
- transmission length: $55 \pm 10m$ at ?=460 m
- underwater currents: <10 cm/sec measured over the last 10 years

- optical background: ~50 kHz/OM due to K40 decay, bioluminescence activity (1% of the experiment live time)
- sedimentology tests: flat clay surface on sea floor good anchoring ground.

NESTOR TOWER

Detector looking downwards ±50° around Nadir

Ti-Sphere Electronics

The Real Game: June 2000

ElectroOptical cable to shore (18 fibers +1 conductor)

Deployed in June 2000 by the cableship MAERSK-FIGHTER (ALCATEL- TELEDANMARK)

Cable was damaged during laying because of ship's problems. ALCATEL accepted responsibility and will repair the cable.

Cable landing has been completed and first three km have been buried 2 m inside the bottom sand.

Methoni counting room is fully operational.

The Real Game: January 2002

ElectroOptical cable to shore (18 fibers +1 conductor) Cable repaired in January 2002 by the cableship TENEO (TyCom)

Successful deployment of the anchor unit with environmental sensors to 4000m

A NESTOR floor deployment was postponed due to the bad weather conditions

15th of January: The first environmental data transmitted through the 35km ElectroOptical cable to the Methoni counting room

Geodynamic activity transmitted in Real Time

21.02.2002

Typical Current meter Data

transmitted in Real Time from the NESTOR site (4000m depth) through the 35km electrooptical cable

Our January 2002 deployment article, is published in this July issue of Sea Technology, plus, our pyramid-Bottom Station (LAERTIS) makes the cover picture of this journal.

Successful deployment of one NESTOR star with 12 Optical Modules to 4000m

using the

cableship RAYMOND CROZE (FranceTelecom)

29th of March: The first deep sea muon data transmitted to shore

NESTOR Star Deployment (March 2003)

Floor Board

• PMT pulse sensing

Delay lines

- Majority logic event triggering
- Single & coincidence rate scaling
- Waveform capture & digitization
- ${\boldsymbol \cdot}$ Data formatting & transmission
- FPGA & PLD reprogramming

19

12 OUT OF 16 CONNECTORS

Configuration parameters PLD

Trigger Logic & Communication FPGAs

- Timing
- Free running Calibration Trigger
- Adjustable Trigger frequency
- Adjustable LED's light output

Light amplitude

DAQ Architecture

Shore Board

- Downloads the FPGAs & PLD of the Floor Board
- Broadcasts the 40Mhz clock
- Receives Data from the Floor Board
- Transmits Data to the Run Control System

Real Time Monitor

Event samples

Environmental

- Thermometers
- Hygrometers
- •Compass
- Inclinometer/Accelerometer
- Pressure meter

Real Time Monitors

During deployment

Data from a depth of 4000 m Single PMT Rates

Trigger: =4fold Coincidence

Data from a depth of 4000 m

PMT Rates vs Time

Data from a depth of 4000 m

PMT Rates vs Time

Data from a depth of 4000 m Number of Collected P.E.s

Data from a depth of 4000 m Total Number of P.E.s Inside the Trigger Window

Trigger: =4fold Coincidence

During Bioluminescence Activity
 Bioluminescence Activity Excluded

33

Data from a depth of 4000 m

Bioluminescence Contribution to the Total Trigger Rates

Bioluminescence Occurs for the $1.1\% \pm 0.1\%$ of the Active Experimental Time

• Total Trigger Rates

Bioluminescence Contribution to the Total Trigger Rates

Data from a depth of 4000 m Total Number of P.E.s Inside the Trigger Window

Time (ns)

Data from a depth of 4000 m PMT Pulse Height Distribution

Data from a depth of 4000 m Calibration Run

Data from a depth of 4000 m Trigger Studies Preliminary

Data Collected with

Data from a depth of 4000 m **Trigger Studies Data Collected with Preliminary** 4fold Majority Trigger **Experimental Points** 10-1 Thresholds at 120mV (1 P.E.) M.C. Estimation (Atmospheric muons + K⁴⁰) Trigger Rate (Hz) 10⁻²) 10-3 10 7 12 5 6 8 9 11 **Total Charge inside the Trigger Window Coincidence Level** 90 80 70 60 50 40 30 20 10 0 6 12 5 7 8 10 11 q **Coincidence Level**

Data from a depth of 4000 m Trigger Studies Preliminary

Data Collected with

4fold Majority Coincidence Trigger

• Experimental Points

----- M.C. Estimation (Atmospheric muons + K⁴⁰)

	Thresholds at 30 mV	Thresholds at 120 mV	· Rate (Hz)	1 10 ⁻¹	Thresholds at 30mV (1/4 P.E.)
Measured Total Trigger Rates (greater or equal to 4fold)	2.61 ± 0.02 Hz	0.12 ± 0.01 Hz	Trigger	10 ⁻³	Coincidence Level
M.C. Prediction (atmospheric muons only)	0.141 ± 0.005 Hz	0.12 ± 0.01 Hz	er Rate (Hz)	10 ⁻¹	Thresholds at 120mV
			Trigg	10 ⁻³	Coincidence Level

Input to the Fitter

45

Track Reconstruction...

47

♥ X Fit Results			
Page 1 Page 2			
Candidate Track 1		Correlatiion Matrix Vx Vy Vz Theta Phi	
Number of Selected Pulses : 8	Number of Used Pulses: 8 x ² : 1.375 Qx ² :11.600 QL: 35.910	1.00 0.70 -0.07 -0.16 0.99	
Theta 123.10 +/- 20.69	Phi 288.40 +/- 36.62 d8.00 +21.64 -1.50	0.70 1.00 -0.76 -0.82 0.78 -0.07 -0.76 1.00 0.99 -0.19	
Vx 16.74 +/-23.32	Vy -46.29 +/-13.68 Vz -25.89 +/-16.41	-0.16 -0.82 0.99 1.00 -0.29 0.99 0.78 -0.19 -0.29 1.00	Show Details

51

	I DOD : OUTOUTOD RACHITE		
	Contraction Contra		
	Page 1 Page 2		
Best Fit	Candidate Track 1	Correlatiion Matrix Vx Vy Vz Theta Phi	
Doot i n	Number of Selected Pulses: 7 Number of Used Pulses: 7 x ² : 2.287 Qx ² :16.620 QL: 30.550	0.00 0.99 0.57 0.91 -1.00	
\rightarrow	Theta 92.53 +/-13.82 Phi 148.50 +/-36.31 d7.00 +16.47 -0.90	0.99 0.00 0.53 0.92 -1.00 0.57 0.53 0.00 0.81 -0.54	
	Vx -47.83 +/-10.76 Vy 24.52 +/-29.48 Vz1.64 +/-6.32	0.91 0.92 0.81 -0.04 -0.91	
		-1.00 -1.00 -0.54 -0.91 1.00	Show Details
	Candidate Track 2	Correlatiion Matrix	
	Number of Selected Pulses : 7 Number of Used Pulses : 7 x ² : 3.014 Qx ² :16.450 QL : 29.040	0.00 1.00 1.00 1.00 0.98	
	Theta 25.97 +/-218.40 Phi 212.60 +/-71.31 d10.00 +194.003.90	1.00 0.00 1.00 1.00 0.97	
	$v_{\mathbf{X}}$ -25.19 +/-111.30 $v_{\mathbf{y}}$ -9.33 +/-91.16 $v_{\mathbf{Z}}$ 45.00 +/-31.91	0.98 0.97 0.96 0.97 1.00	Show Details
	Candidate Track 3	Correlatiion Matrix	
	Number of Selected Pulses: 7 Number of Used Pulses: 7 x ² ; 7.307 Qx ² ;1954.000QL; 77.210	0.00 -0.99 1.00 -0.29 0.03	
	Theta 98 77 +/-11 93 Phi 164 30 +/-68 77 dt43 50 +42 85 -10 84	-0.99 0.00 -0.99 0.32 -0.02	
	No. 27.10 / 20.45 No. 2.02 / 10.40 No.00.40 / 50.00		
	$\nabla x = -37.18 + 7 - 30.45$ $\nabla y = 3.83 + 7 - 19.49$ $\nabla z = 22.49 + 7 - 50.92$	-0.29 0.32 -0.29 -0.15 -0.79 0.03 -0.02 0.03 -0.79 1.00	Show Details

53

Letters : 635 Spheres : 31 Cylinders : 4 Cones : 1 Lines : 25 Quads : 4

Run: 81_127 Event: 1789

Input to the Fitter

Run: 81_127 Event: 1789

Best fit

Fit Results

age 1 Page 2			
Candidate Track 1	^	Correlatiion Matrix	
	Number of Head Datases 7 at 0 570 -002010 000 014 64 600	VX Vy Vz Theta Phi	
Number of Selected Pulses : a	• Number of Used Puises : 7 x*: 2.579 Qx*:310.800 QLY: 64.800		
Theta 12.32 +/-26.40	Phi 58.47 +/-144.50 d22.50 +39.40 -2.89	-0.99 -0.49 1.00 0.22 0.24	
Vx 24.91 +/-33.52	Vy 15.07 +/-10.28 Vz 33.56 +/-41.01	-0.330.72 0.22 1.00 0.96	1251 2
		-0.36 0.70 0.24 0.96 1.00	Show [
Candidate Track 2		Correlatiion Matrix	
Number of Selected Pulses : 8	Number of Used Pulses : 7 x2: 2.402 Qx2:173.500 QL : 49.160	1.00 -0.72 -0.95 0.56 -0.58	
Theta 91 86 +/-9 99	Phi 11 22 \pm /- 28 55 d 17 50 \pm 24 97 \pm 5 32	-0.721.00 0.50 -0.830.98	
		-0.95 0.50 1.00 -0.28 0.33	
Vx 43.21 +/-21.44	vy 14.33 +/-15.05 vz 12.82 +/-19.76		Show [
Number of Selected Pulses : 8	Number of Used Pulses : 7 x²: 6.313 Qx²:892.100 QL : 47.910		
Theta 83.93 +/-6.24	Phi 24.69 +/-25.34 d14.00 +9.58 -6.04	-0.83 -0.21 1.00 -0.22 0.97 0.83 -0.21 1.00 0.19 -0.40	
Vx 44.28 +/-10.76	Vy 21.04 +/-13.04 Vz -5.78 +/-10.82	-0.03 -0.22 0.19 1.00 -0.16	
		-0.80 0.97 -0.40 -0.16 1.00	Show [
Candidate Track 4		Correlatiion Matrix	
Number of Selected Pulses : 8	Number of Used Pulses : 7 x²: 6.343 Qx²:666.500 QL : 48.540	1.00 -0.33 0.89 -0.88 -0.75	
Theta 161.30 +/- 23.58	Phi 341.80 +/- 56.43 d 12 00 + 27 66 - 1 29	-0.33 1.00 0.08 0.73 0.79	
04.0C / 10.71	w 2.07 / 12.20 w 41.07 / 14.05	0.89 0.08 1.00 -0.59 -0.51	
VX 24.06 +/- 12.71	vy 3.97 +/- 13.39 vz -41.27 +/- 14.25		Show [
		0.10 0.19 0.01 0.90 1.00	

Run: 81_127 Event: 1789

Pictorial Representation

Total number of p.e.s per Track

- M.C. Prediction (atmospheric muons)
- Data Points

4 NESTOR Floors

NESTOR Tower

10000 m² effective area for E>10TeV

20000 m² effective area for E>10TeV