

Status and Results

(http://www.amanda.uci.edu)

Elisa Bernardini DESY Zeuthen, Germany

VLVnT Workshop Amsterdam, Oct. 2003

Content

- 1. AMANDA: set-up and detection parameters
- 2. Atmospheric v's
- 3. Search for astrophysical v's:
 - \rightarrow diffuse/point-like sources
- 4. Indirect WIMPs search
- 5. Other physics topics
- 6. Conclusions and Outlook

The AMANDA Collaboration

≈150 members

Bartol Research Institute UC Berkeley UC livine Pennsylvania State UW Madison UW River Falls LBL Berkeley U. Simón Bolivar, Caracas VUB, Brussel **ULB-IHEE**, Bruxelles U. de Mons-Hainaut Imperial College, London DESY, Zeuthen Mainz Universität Wuppertal Universität Stockholm Universitet Uppsala Universitet Kalmar Universitet South Pole Station

The Site

AMANDA

South Pole

The Dome

The new station operating at least until 2035

2km deep

Amundsen-Scott Station

AMANDA-II and **SPASE**

Detection parameters

noise rate: ~ KHz (or below)

trigger rate: ~ 80 Hz

muons:	
directional error:	2.0 - 2.5°
log E resolution:	0.3 - 0.4
coverage:	2 p
energy range:	~ 50 GeV ± 100 PeV
n effective area:	~ 2-5 m ² @ 100 TeV

cascades: (e ^{±,} τ ^{±,} neutral current)					
zenith error:	30 - 40 °				
log E resolution:	0.1 – 0.2				
coverage:	4 p				
energy range:	~50 TeV ± 100 PeV				

Atmospheric n's in AMANDA-II

Atmospheric muons and neutrinos: AMANDA's test beams

- Neural network energy reconstruction
- regularized unfolding
 → spectrum up to 100 TeV
- results compatible with Frejus data

Possible to use the energy spectrum to study excess due to cosmic **n**'s

Search for astrophysical neutrinos

background:

- \rightarrow fake-reconstructed atmospheric muons,
- \rightarrow neutrinos from atmospheric air showers

signal:

- \rightarrow diffuse flux at high energy,
- \rightarrow accumulation at point sources
- search for high energy muon neutrinos upward and downward (with extreme high energy)
- search for cascades with high energy

search for point sources

search for neutrinos in coincidence with GRB

Search for a TeV-PeV diffuse flux: upward going muons

1997 data sample 1

 Hit channels multiplicity as energy indicator
 Cuts optimized for best sensitivity NO EXCESS OBSERVED

¶PRL 90 (2003), 251101

 $E^2 \Phi(E) < 8.4 \cdot 10^{-7} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$

Search for a PeV-EeV diffuse flux: downward muons and muons close to horizon

Synthesis: diffuse flux limits for all flavours

Point source search in AMANDA II

Search for excess events in sky bins for up-going tracks

- Cuts optimized in each declination band
- sensitivity ≈ flat up to horizon, in average 4 times better than B10 ¶
- 697 neutrino events observed from below the horizon
- 5% non-neutrino background for θ > 5°
- Grid Search (sky subdivided into 300 bins ~7°x7°)
 Search around defined sources

declination averaged sensitivity: $\Phi_v^{\text{lim}} \approx 0.23 \cdot 10^{-7} \text{ cm}^{-2} \text{s}^{-1} @ 90\% \text{CL}$

¶ Ap. J, 582 (2003)

Search for excess events in sky bins for up-going tracks

Point source flux limits

antA	RY					
PRELIMIU	Sources	declination	1997	2000		
	SS433	5.0 [°]	-	0.7		
	M87	12.4 [°]	17.0	1.0	1.07 events predicted [¶]	
	Crab	22.0°	4.2	2.4	90% CL upper limit of 1 24 events	
	Mkn 421	38.2°	11.2	3.5		
	Mkn 501	39.8°	9.5	1.8		
	Cyg. X-3	41.0 [°]	4.9	3.5	Sensitivity comparable	
	Cas. A	58.8°	9.8	1.2	TeV γ-ray flux (HEGRA)	

upper limits @ 90% CL in units of 10⁻⁸cm⁻²s⁻¹ for an assumed E⁻² spectral shape integrated above E_v=1 GeV

1C.Distefano et al., Ap. J., 575 (2002)

AMANDA-II achieved the sensitivity to search for neutrinos from TeV γ -ray sources (ν/γ ~1)

Search for n_m correlated with GRBs

→ effective μ -area \approx 50000 m²

Year	#GRB	bkg	observed	NO EXCESS OBSERVED
1997	78	0.10	0	\rightarrow assuming WB spectrum
1998	99	0.20	0	(E _B at 100 TeV and Γ = 300)
1999	96	0.20	0	flux limit:
2000	44	0.60	0	$\sim 4 \times 10^{-8} \text{GeV}/\text{s}^{-1} \text{cm}^{-2} \text{sr}^{-1}$
Total	317	1.30	0	INARY
			PRELI	

Upper limits on the muon flux coming from neutralino annihilations in the center of the Earth

Sensitivitiy on the muon flux coming from neutralino annihilations in the center of the Sun

Analysis made feasible by the **improved reconstruction capability** for **horizontal tracks**, compared to B-10.

AMANDA-II results: →Exclusion sensitivity from analyzing the off-source bins

> Sensitivity competitive with direct searches

Cosmic ray composition studies

SPASE-2 (electron component) - AMANDA B10 (muon component)

composition change around the knee

Relativistic Magnetic Monopoles

1997 data sample

→ Signal: much higher
 light output (~8300)
 compared to muons
 → used simple track
 reconstruction
 → background (atm.
 neutrinos): suppressed
 on the basis of channel
 multiplicity

Summary

•The AMANDA detector is complete since 2000: 19 strings, 677 OMs

- → analyzed data from 97-99 (B10) and 2000 (A-II)
- \rightarrow atmospheric v: energy spectrum (1÷100 TeV)

• Results on the search for extraterrestrial **n**:

- \rightarrow limits on diffuse flux at high E $_{\rm v}$
- \rightarrow limit on diffuse flux at extreme high E_v
- \rightarrow limits on flux from point sources

no effect seen up to now

limits are at the level of optimistic expectations

• Search for **n** resulting from WIMP annihilations:

 \rightarrow center of the Earth: limit

 \rightarrow center of the Sun: sensitivity

(competitive to results from direct searches)

Outlook

Complete analysis of 2000 data:

 → diffuse flux of HE neutrinos
 → WIMPs from Earth and Sun

 combined analysis of 2000 ... 2003:

 factor 4 in statistics

 improve search for magnetic monopoles:

extend search to non-relativistic monopoles

FADC readout (single photoelectron resolution):

 → improved reconstruction and
 → analysis for high energy events

 first IceCube strings 2004/05

 → combined analysis with AMANDA

Atmospheric muons in AMANDA-II

μ Vertical Intensity for AMANDA-II $I_{\mu} \stackrel{^{-2}sec^{-1}sr^{-1}}{=}$ AMANDA-II (this work) Monte Carlo (CORSIKA) Vavilov (1970) Fyodorov (1985) DUMAND (1990) BAIKAL NT-36 (1995) AMANDA-B4 (1999) Bugaev et al. $(E_a \ge 20 \text{ GeV})$ 10 10 NAR -10 10 3 5 depth (kmwe)

data 30% higher than MC (QGSJET) ∠ normalize to most vertical bin

Systematic errors:

- •10% ice parameters: scattering (20m @ 400nm) absorption (110m @ 400nm)
- 20% optical module sensitivity
- 10% refreezing of ice in hole

threshold ~ 40 GeV (zenith averaged)

Is there a signal at higher energies?

Limit on diffuse flux for muon neutrinos

