lceCube

Christian Spiering, VLVNT Workshop Amsterdam, October 2003

IceCube Collaboration

Institutions: 11 US, 11 European, 1 Japanese and 1 Venezuelan

- 1. Bartol Research Institute, University of Delaware
- 2. BUGH Wuppertal, Germany
- 3. Universite Libre de Bruxelles, Brussels, Belgium
- 4. CTSPS, Clark-Atlanta University, Atlanta, USA
- 5. DESY-Zeuthen, Zeuthen, Germany
- 6. Institute for Advanced Study, Princeton, USA
- 7. Lawrence Berkeley National Laboratory, Berkeley, USA
- 8. Department of Physics, Southern University and A\&M College, Baton Rouge, LA, USA
- 9. Dept. of Physics, UC Berkeley, USA
- 10. Institute of Physics, University of Mainz, Mainz, Germany
- 11. University of Mons-Hainaut, Mons, Belgium
- 12. Dept. of Physics and Astronomy, University of Pennsylvania, Philadelphia, USA
- 13. Dept. of Astronomy, Dept. of Physics, SSEC, University of Wisconsin, Madison, USA
- 14. Physics Department, University of Wisconsin, River Falls, USA
- 15. Division of High Energy Physics, Uppsala University, Uppsala, Sweden
- 16. Dept. of Physics, Stockholm University, Stockholm, Sweden
- 17. Dept. of Physics, University of Alabama, USA
- 18. Vrije Universiteit Brussel, Brussel, Belgium
- 19. Chiba University, Japan
- 20. Dept. of Astrophysics, Imperial College, UK
- 21. Dept. of Physics, University of Maryland, USA
- 22. Universidad Simon Bolivar, Caracas, Venezuela
- 23. NIKHEF, Utrecht, Netherlands

 \rightarrow US Funding by NSF

→ Awardee is University of Wisconsin

→ IceCube belongs to the class of MRE (Major Research Equipment) projects.

→ IceCube has recently made the official step from the R&D phase (Year 1 and 2) to the implementation phase, i.e. it is installed as MRE project.

Design and Technology

IceCube

- 80 Strings
- 4800 PMT
- Instrumented volume: 1 km³
- Installation: 2004-2010

~ 80.000 atm. v per year

Hot water drilling

Hot-Water Drilling

Drilling: from Amanda to IceCube

Amanda IceCube

Heat (surface) 2 MW 5 MW

Time to 2400 m 120-140 hours 35-40 hours

Fuel (gal/hole) 10,000 - 12,000 7,000 - 8,000

Set-up Time5-6 weeks18-25 days

10/7/2003

Drilling

Hole #19 - Depth vs. Time

CEPTOPRET DOW ...

m will be at room Cemperature

Digital Optical Module - (DOM)

- \rightarrow Captures waveforms with
 - 250 MHz first 500 ns
 - 40 MHz over 5000 ns
- \rightarrow Time-stamps each pulse
 - r.m.s. < 5 nsec
- \rightarrow Dynamic range
 - 200 PE over 15 ns
 - 2000 PE over 5000 ns
- \rightarrow Dead time < 1 %
- → Noise rate < 500 Hz

33 cm

Digital Optical Model Block Diagram

DOM Main Board - March 2003

DOR PCI-Card

Read-out of 8 DOMs (2 per twisted pair cable)

10/7/2003

Amanda DOM test string

- timing 3.5 ns r.m.s.
- cable length << 1 ns r.m.s.
- gain drift << 0.2% per week
- down going muons as expected
- 15% of events have > 1 hit

Time **Synchronization**

Physics Capabilities

Effective Area of IceCube

Angular resolution as a function of zenith angle

C.Spiering, VLVNT Workshop

Energy Spectrum Point Source Search

Blue: after downgoing muon rejection Red: after cut on N_{hit} to get ultimate sensitivity

Energy Spectrum Diffuse Search

Blue: after downgoing muon rejection Red: after cut on N_{hit} to get ultimate sensitivity

C.Spiering, VLVNT Workshop

IceCube sensitivity vs time

Diffuse Fluxes

Point Sources

Search for diffuse excess of extra-terrestrial high energy muon neutrinos

Limit on all neutrino flavors

Supernova Monitor

B10: 60% of Galaxy

A-II: 95% of Galaxy

10/7/2

Functions of IceTop

- IceCube calibration with the help of downgoing muons (absolute pointing, angular resolution, detector geometry, ice atten.)
- Anti-Shield (helps to reject downgoing muons from independent air showers)
- Chemical Composition (IceTop measures electron component, IceCube muon component)

Chemical Composition

Schedule

03-04	drill equipment to Pole
04-05	first strings
	(proof that 16/season are feasible,
	prepare 6 full strings)
05-06	12 strings
06-07	16 strings
07-08	16 strings
08-09	16 strings
09-10	remaining strings

03-04	drill equipment to Pole
04-05	first strings
	(proof that 16/season are feasible,
	prepare 6 full strings)
05-06	12 strings
06-07	16 strings
07-08	16 strings
08-09	16 strings
09-10	remaining strings

Cost including personnel, contingency and overhead: ~ 250 M\$ Detector: ~ 55 M\$, logistics including drilling: ~ 40 M\$

Addendum on Lake Baikal

The Baikal Collaboration

Institute of Nuclear Research, Moscow Irkutsk State University, Irkutsk DESY Zeuthen, Zeuthen Moscow State University, Moscow Nishni Novgorod State Technical University State Marine Technical University, St.Petersburg Kurchatov Institute, Moscow JINR, Dubna

complement Amanda.

43

Lake Baikal: The Detector

Baikal Upgrade NT200+

36 additional PMTs \rightarrow 4 times better sensitivity !

C.Spiering, VLVNT Workshop

A lesson on electro-corrosion

unexpected electro-corrosion after > 6 years

Detector runs only with 5 strings in 2003. Two new cables in March 2004.

10/7/2003

C.Spiering, VLVNT Workshop

End of Talk