

vessels

ROVs & suport toolings

special machines

ROV multi-tasking

conclusions

VLVnT Workshop

Enabling technologies for deepwater operations

Amsterdam, October 7th, 2003

🚔 Saipem

summary

vessels

ROVs & suport toolings

special machines

ROV multi-tasking

conclusions

Deployment to sea bottom: support vessels Underwater operations

- ROVs + support tooling; example of operation
- specially developed machines with dedicated power and control: one example from recent experience
- ROV multi-tasking: dedicated machines for individual operations, operated through ROVs: one example case

fundamental capabilities for deepwater installation

vessels

ROVs & suport toolings

special machines

ROV multi-tasking

conclusions

deployment to seabed and positioning over site with adequate accuracy

capability to work in very deep water by remote control with dexterity and safety

engineering of equipment and operations

Saipem

Support vessels Example: Polar Prince

vessels

ROVs & suport toolings

special machines

ROV multi-tasking

Support vessels

Example: Polar Prince

vessels

ROVs & suport toolings

special machines

ROV multi-tasking

Sonsub Saipem	Support vessels Example: Polar Prince		
vessels	length (LOA)	94.1 m	
ROVs & suport toolings	beam	22.0 m	
special machines	draught	7.1 m	
special machines	clear deck area	1,000 m ²	
ROV multi-tasking	deepwater crane capacity (2000 msw)	75 t	
	(constant tension and heave compensated)		
conclusions	A-frame capacity	100 t	
	stern roller	60 t	
	moonpools: two: 7x 6,5 m and 4	4,9 x 5,2 m	

🕌 Saipem

Support vessels Example: Polar Prince

vessels

ROVs & suport toolings

special machines

ROV multi-tasking

conclusions

Propulsion and Thrusters:

- 2 x 4.3 kW CP propellers in nozzles
- 3 transverse thrusters
- 2 azimuth thrusters

Dynamic Positioning

fully redundant system DP2, 2 DGPS

🕌 Saipem

Support vessels Example: Maxita

vessels

ROVs & suport toolings

special machines

ROV multi-tasking

Sonsub	Support vessels Example: Maxita		
vessels			
ROVs &	length	162 m	
suport toolings	beam	38 m	
special machines	draught	9 m	
	deck capacity	18,000 t	
ROV multi-tasking	deck area:	3,800 m ²	
	accommodations:	84 berths	
conclusions	craneage:		
	main hook	600 t	
	auxiliary hook	200 t	
	heave compensation to	+/-1.6 m	

Sonsub	Support vessels Example: Maxita		
vessels ROVs & suport toolings	tunnel thruster Fwd azimuth thruster Fwd	800 HP 2 x 3,600 HP	
special machines	azimuth thruster Aft	2 x 2,780 HP	
ROV multi-tasking			
conclusions	DP System DP 2, fully red	undant Simrad 702	

Saipem

Underwater works: Remotely Operated Vehicles

vessels

ROVs & suport toolings

special machines

ROV multi-tasking

conclusions

 Typical "Working Class" ROVs are free-flying vehicles linked to surface through an electric umbilical

 ROVs are typically powered by a submersible electric motor rated about 100 to 150 HP; this motor generates hydraulic power; ROV users are typically hydraulic

 Typical ROV missions include use of manipulators and of specific support toolings

Underwater works: other vehicles

vessels

ROVs & suport toolings

special machines

ROV multi-tasking

- Manned submersible vehicles are not of normal use in the offshore industry
- Autonomous Underwater Vehicles (AUV) are used in the industry for a limited number of job types, especially survey. Possible further development may lead to increased possibility of use in other activities, such as data gathering for maintenance. Low power availability and poor station keeping capability prevent their use as work class ROVs.

Underwater works: Remotely Operated Vehicles

vessels

ROVs & suport toolings

special machines

ROV multi-tasking

conclusions

Typical underwater works by ROVs include:

- survey
- assistance for deployment to sea bottom
- manipulation
- small tasks on subsea equipment (e.g.: cleaning,

cutting), assisted or not by manipulators

🕌 Saipem

ROVs Example: Innovator

vessels

ROVs & suport toolings

special machines

ROV multi-tasking

Sonsub	Innovator main da	ta	
vessels	Dimensions (LxWxH):	3.00 x 1.5	0 x 2.00 m
ROVs & suport toolings	Payload		3 kN
special machines	Depth capability (two Innovators upo	graded to	3,500 msw 4,000 msw)
ROV multi-tasking	Hydraulic Power System		
conclusions	one electric motor 150 Hydraulic Power Unit ((HP; 4,200 √ (HPU) driven	 , two shaft ends by electric motor
	Propulsion System Seven Curvetech hydr	aulic thruste	rs

Innovator main data

vessels

ROVs & suport toolings

special machines

ROV multi-tasking

 max thrust capacity, forward/lateral 	10 kN
 max thrust capacity, vertical 	6 kN
 through-frame lifting capacity 	140 kN
 power through umbilical 	500 HP

- capability for automatic heading and trimming
- ring laser gyro
- extended tether

ROVs: the <u>Tether Management System</u>

vessels

ROVs & suport toolings

special machines

ROV multi-tasking

ROV and TMS being deployed

vessels

ROVs & suport toolings

special machines

ROV multi-tasking

Extended tether - horizontal excursion

vessels

ROVs & suport toolings

special machines

ROV multi-tasking

conclusions

typical for standard ROVs: 200 - 300 m

0

600

600 m

800 m

Saipem

Examples of support toolings for ROVs

vessels

ROVs & suport toolings

special machines

ROV multi-tasking

Example of ROV operation

vessels

ROVs & suport toolings

special machines

ROV multi-tasking

conclusions

Tapping operation: cutting a 700 mm dia hole through a steel plate on a sunken vessel and fitting a valve on it

vessels

ROVs & suport toolings

special machines

ROV multi-tasking

conclusions

In some cases special machines are designed and built on purpose, to carry out specific jobs which are not within ROV capabilities

One example follows: Beluga

🕌 Saipem

Mission requirement: pipeline burial for free-span correction

vessels

ROVs & suport toolings

special machines

ROV multi-tasking

- very deep water: up to 2,200 m
- free-flying for easy installation over the pipeline
- pipe slope up to 30°
- trenching all soils, including rock up to 30 MPa

Sonsub	Mission requirement: pipeline burial for free-span correction
vessels ROVs & suport toolings	 Pipeline as laid Trench depth 3,8m Pipeline post trenching
special machines	
ROV multi-tasking conclusions	

Beluga

vessels

ROVs & suport toolings

special machines

ROV multi-tasking

Beluga

vessels

ROVs & suport toolings

special machines

ROV multi-tasking

Beluga main data

vessels

ROVs & suport toolings

special machines

ROV multi-tasking

conclusions

max water depth

pipeline size

weight in air

free-flying

dimensions (L x W x H,m)

total power on vehicle

trenching by

suction by

trench size

rated 2200 mwd

24", adjustable for other sizes

38 tonnes

8 thrusters @ 8 kN each

8 x 2.5 x 4.5

2 x 280 kW @ 4.2 kV

2 cutting discs for variable trench profile

2 pumps rated 1000 m3/h each

max 1.5 m one pass, capable of multipass and trench widening

Beluga

vessels

ROVs & suport toolings

special machines

ROV multi-tasking

conclusions

animation to show how Beluga works

Subsea tool multi-tasking

vessels

ROVs & suport toolings

special machines

ROV multi-tasking

conclusions

This mode of operation consists of making use of ROVs and interfacing them with specially developed machines, to carry out specific tasks

🚔 Saipem

Subsea tool multi-tasking

vessels

ROVs & suport toolings

special machines

ROV multi-tasking

- individual special machines are developed to perform specific operations
- these machines are operated through ROVs, by using their power, which is transferred through hydraulic wet-mateable connectors
- control is either performed through ROVs (for simple cases) or from a surface separate control station. In both cases the link to surface is through the ROV umbilical.
- wet mateable connector systems to transfer hydraulic power and electric power/signal have been successfully developed and are the basis for extended use of multitasking

Wet mateable connector plate: example (moving part)

vessels

ROVs & suport toolings

special machines

ROV multi-tasking

and an a			
C/	104	211	a
30	אווצ	ธเนเ	U
and an and		-	200

ROV docking and mating over underwater

user

vessels

ROVs & suport toolings

special machines

ROV multi-tasking

conclusions

video to show connector mating

Sonsub Baipem	Subsea tool multi-tasking: example from experience
vessels ROVs & suport toolings	
special machines ROV multi-tasking	BRUTUS: an underwater system for pipeline tie-ins
conclusions	

🚔 Saipem

Conclusions

vessels

ROVs & suport toolings

special machines

ROV multi-tasking

- present technology enables capabilities to deploy underwater systems to water depth up to 3000 m and more
- general purpose equipment to do operations in such water depths are available to the industry
 - specific dedicated equipment, to be used in combination with available equipment, can be developed on the ground of established engineering methods
- high level equipment engineering and operation engineering are required. Both of them are within capabilities of the offshore industry today.