Wild Idea on Photon Detection

10 contributions

Status of present Optical Modules

News from industry

Concepts and Cryticism in view of the

VLVnT

Conditions:

- •3000 m under water at least
- ⁴⁰K background of single photons at 300Hz/cm²
- Some bioluminescent background
- •Signal depends on energy and distance

Low energy muon : R~50m photon flux = 0.02/cm²
High energy muon : R~50m photon flux = 0.2/cm²
Hadronic shower: R~50m photon flux = 1.0/cm²
Electron shower E=1TeV close by flux > 100/cm²
Electron shower E=1PeV close by flux > 10⁵/cm²

Requirements:

Large area
High quantum efficiency
Good single photon resolution
High dynamic range
4π solid angle

Has to fit in a transparent pressure vessel

Monday, 7 Oct. Program ANTARES (F.Vernin), NEMO (S.Reito) and NESTOR (L.Resvanis) Optical Modules

News from Electron Tubes (A.Wright), Hamamatsu (Y.Yoshizawa) and Photonis

(S.Flyckt)

The 0.1 km² Detector

Optical modules – PMT's Specs

To summarise:

- Sensitive area \cong **500 mm**²
- (quantum \oplus collection) efficiencies > 16 %
- Amplification 2. 10^8 for HV < 2500 V

At working point (\equiv amplification = 5. 10⁷)

- Transit time spread < 3.6 ns (FWHM)</p>
- ✤ Dark count (@ 0.3 spe) < 10 kHz</p>
- Peak/valley > 2
- Shape of signal $t_r < 5$ ns $t_w < 12$ ns and $t_f < 15$ ns
- ✤ Pre, late and after pulses < 1 %, 2%, 10 %</p>

in the window [.1, 16] ms after

in the window 10, 100] ns after

in the window [-100, -10] ns before the true pulse

Optical module - Assembly (2)

The PMT is going down

24 h later...

The last step for this hemisphere:

the gluing of the LED and pulser circuit

The NESTOR Optical Module

Hamamatsu PMT inside the BENTHOS sphere

Data from a depth of 4000 m PMT Pulse Height Distribution

Data from a depth of 4000 m Calibration Run

Calibration Data Analysis

Large Format PMT Lineup

General Specification of R8055

Window : Borosilicate Photocathode : Bialkali Tube Length : 332 mm Dynode Type TTS (FWHM) Rise Time P/V ratio Dark Counts

- Tube Diameter : 13 inch (332 mm)

 - : Box and Line / 10-stage

- Nominal Gain : 1E+07 at 1500V
 - : 2.8 ns typ.
 - : 6.0 ns typ.
 - : 2.7 typ.
 - : 10 KHz typ.

Hamamatsu Photonics K.K. Electron Tube Center

Sketch of 5 inch HPD

This 5 inch HPD was made as feasibility study. Glass bulb of 5 inch hemispherical PMT was used.

HPD : Hybrid Photo Detector

PHD with Multi photoelectrons

HAMAMATSU

Electron Tube Division #1

(TO-8 type HPD : Rise time = 1.2 ns, Fall time = 13 ns)

Multiple PMTs/OM

High QE

lambda	QE		
en nm	n° 93599	n° 93600	n°93601
337	26	24	26
384	33	33	32
404	33	32	31
420	31	31	31
439	30	30	30
496	23	23	23
514	20	19	21
547	13	12	13
595	7	8	8
629	5	6	6
667	3	3	3
698	1	1	1
blanc	164	165	165
bleu	13.4	13.6	13.1

C PRINCIPALITY

The BLOB

LONG-FUTURE POSSIBILI Esso Flyckty Photon	TY (10 YEARS?)
Clackmark Line	ANT LOSS ! INI DIRECTIONAL TRADITIONAL
THE "BLOB" (Benthic Light Ocean Bathysp	thenc)
	MINIMUM LIGHT LOSS, CONBINED GLASS HOUSING MULTI DIRECTIONAL "SMART"
G= 36 KV ~ 104 KN Si 3.6 EV ~ 104 KN Si Si Si Si Si Si Si Si Si Si	APD AREAY AREAY AREAY

Status "smart" PMTs

Philips made ~ 30; invested 1 M\$!
 200 Quasars in Lake Baikal!!!
 No ongoing production

Tuesday, 8 Oct. Program

M.Giunta (NFN-PI), A.Bersoni (INFN-Ge), G.Anton (U.Erlangen), P.Kooijman (NIKHEF)

HPD Working Principles: vacuum tube

l'ime

STOPPED

e⁻

The 5",10" (and 20") HPDs

Michele Giunta

Currently the TOM HPDs are:

5" Bialkali & 5" Rb₂Te borosilicate

HPD: Quantum Efficiency

UV Rb₂Te 5" Q.E

The low value measured is due to the borosilicate cut. The red line is the expected value if the HPD had a quartz window.

Visible Bialkali 10" Q.E

Measured spectral response in the visible band. A 24% peak is reached.

Direction Sensitive Light Collection

* A PMT cannot determine incoming photons direction
* This can be achieved with a proper light collection system
* This can be used with a multianodic PMT or with an array of PMTs

Light Guide

Light guide for a system of four 5"PMTs

- Simple structure
- * Plexiglas light guides
- * High reflectivity coating
- Good directionality and 10" effective equivalent area

7 Oct. 2003

Light Collector

Light collector for multianodic PMT (or HPD)

- * Simple and cheap material (aluminised PETG)
- * Preserves directionality
- Slightly improves light collection efficiency
- * Allow very good optical coupling with BS

Use a "GEM" foil but not in gas??

Only use the foil to focus produced pe's

APD or multiplication dynodes Reflective cathode and HPD type device combined Hard to make in a sphere shape, but maybe foil is not necessary. Could be more solid.

Even wilder....

APD or PMT

A la BAIKAL PMT Could be made quite long Double readout gives good timing Obviously 30 kV is not easy.

Fairly simple device

Summary

New products or ideas from industries
New concepts (directionality, high collecting light efficiency)

Conclusive Remarks

Detector design specifications and simulations are required to REALLY prove the effectiveness of the proposed improvements (Energy range, Shape, ...)

A photodetector development program should be included in the financial request to EU